Что такое возобновляемые источники электроэнергии? Возобновляемые источники энергии. Регенеративные виды добычи История развития возобновляемых источников энергии

ВВЕДЕНИЕ

Современное развитие энергетики в России характеризуется ростом стоимости производства энергии. Наибольшее увеличение стоимости энергии наблюдается в удаленных районах Сибири и Дальнего Востока России, Камчатки, Курильских островов, где в основном используются децентрализованные системы электроснабжения на базе дизельных электростанций, работающих на привозном топливе. Совокупная стоимость электроэнергии в этих районах часто превышает мировой уровень цен и достигает 0,25 и более долларов США за 1 кВтчас.

Мировой опыт показывает, что ряд стран и регионов успешно решают сегодня проблемы энергообеспечения на основе развития возобновляемой энергетики. Для интенсификации практического использования возобновляемых энергоресурсов в этих странах законодательно устанавливаются различные льготы для производителей «зеленой» энергии. Однако решающий успех возобновляемой энергетики определяется в конечном счете ее эффективностью в сравнении с другими более традиционными на сегодня энергоустановками топливной энергетики. Развитие технической и законодательной базы возобновляемой энергетики и устойчивые тенденции роста стоимости топливноэнергетических ресурсов уже сегодня определяют техникоэкономические преимущества электростанций, использующих возобновляемые энергоресурсы. Очевидно, что в перспективе эти преимущества будут увеличиваться, расширяя области применения возобновляемой энергетики и увеличивая ее вклад в мировой энергетический баланс.

КЛАССИФИКАЦИЯ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ (ВИЭ)

Возобновляемые источники энергии (ВИЭ) - это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов жизнедеятельности биоценозов растительного и животного происхождения. Характерной особенностью ВИЭ является их неистощаемость, либо способность восстанавливать свой потенциал за короткое время - в пределах срока жизни одного поколения людей.

Генеральной Ассамблеей ООН в соответствии с резолюцией 33/148 (1978г.) введено понятие «новые и возобновляемые источники энергии», в которое включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, приливов океана, энергия биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников, гидроэнергия.

Чаще всего к возобновляемым источникам энергии относят энергию солнечного излучения, ветра, потоков воды, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:

Механическая энергия (энергия ветра и потоков воды);

Тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

Химическая энергия (энергия, заключенная в биомассе).

Если использовать понятие качества энергии - коэффициент полезного действия, определяющий долю энергии источника, которая может быть превращена в механическую работу, то ВИЭ можно классифицировать следующим образом: возобновляемые источники механической энергии характеризуются высоким качеством и используются в основном для производства электроэнергии. Так, качество гидроэнергии характеризуется значением 0,6…0,7; ветровой - 0,3…0,4. Качество тепловых и лучистых ВИЭ не превышает 0,3…0,35. Еще ниже показатель качества солнечного излучения, используемого для фотоэлектрического преобразования, - 0,15…0,3. Качество энергии биотоплива также относительно низкое и, как правило, не превышает 0,3.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Основными преимуществами ВИЭ по сравнению с энергоисточниками на органическом топливе являются практическая неисчерпаемость ресурсов, повсеместное распространение многих из них, отсутствие топливных затрат и выбросов вредных веществ в окружающую среду. Однако они, как правило, более капиталоемки, и их доля в общем энергопроизводстве пока невелика (за исключением гидроэлектростанций). Согласно большинству прогнозов, эта доля останется умеренной и в ближайшие годы. Вместе с тем во многих странах мира возрастает интерес к разработке и внедрению нетрадиционных и возобновляемых источников энергии. Это объясняется несколькими причинами.

Во-первых, ВИЭ, уступая традиционным энергоисточникам при крупномасштабном производстве энергии, уже в настоящее время при определенных условиях эффективны в малых автономных энергосистемах, являясь более экономичными (по сравнению с энергоисточниками, использующими дорогое привозное органическое топливо) и экологически чистыми.

Во-вторых, применение даже более дорогих, по сравнению с традиционными энергоисточниками, ВИЭ может оказаться целесообразным по другим, неэкономическим (экологическим или социальным) критериям. В частности, применение ВИЭ в малых автономных энергосистемах или у отдельных потребителей может существенно повысить качество жизни населения.

В-третьих, в более отдаленной перспективе роль ВИЭ может существенно возрасти и в глобальном масштабе. В ряде стран и международных организаций проводятся исследования долгосрочных перспектив развития энергетики мира и его регионов. Интерес к этой проблеме обусловлен определяющей ролью энергетики в обеспечении экономического роста, ее существенным и все возрастающим негативным воздействием на окружающую среду, а также ограниченностью запасов топливно-энергетических ресурсов. В связи с этим, в будущем неизбежна кардинальная перестройка структуры энергетики с переходом к использованию экологически чистых и возобновляемых источников энергии. Мировым сообществом признана необходимость перехода к устойчивому развитию, предполагающему поиск стратегии, обеспечивающей, с одной стороны - экономический рост и повышение уровня жизни людей, особенно в развивающихся странах, с другой - снижение негативного влияния деятельности человека на окружающую среду до безопасного предела, позволяющего избежать в долгосрочной перспективе катастрофических последствий. В переходе к устойчивому развитию важная роль будет принадлежать новым энергетическим технологиям и источникам энергии, в том числе ВИЭ.

К основным недостаткам, ограничивающим применение ВИЭ, следует отнести относительно низкую энергетическую плотность и крайнюю изменчивость. Низкая удельная мощность потока энергоносителя приводит к увеличению массогабаритных показателей энергоустановок, а изменчивость первичного энергоресурса, вплоть до периодов его полного отсутствия, вызывает необходимость в устройствах аккумулирования энергии или резервных энергоисточников. В результате, стоимость производимой энергии оказывается высока даже при отсутствии топливной составляющей в совокупной цене энергии.

Вклад нетрадиционных возобновляемых источников энергии в мировой энергетический баланс в перспективе оценивается от 1…2 % до 10 %, хотя уже сегодня есть страны, где доля этих источников превышает половину национального энергетического баланса. Доля возобновляемых источников энергии в топливо-энергетическом комплексе разных стран мира постоянно возрастает. Это касается как развитых стран (США, Германия, Япония, Франция, Италия и др.), так и, особенно, развивающихся. Например, в 2000 г. доля возобновляемых источников энергии в производстве электроэнергии составила: Норвегия -99,7 %, Исландия - 99,9 %, Новая Зеландия - 72 %, Австрия - 72,3 %, Канада - 60,5 %, Швеция - 57,1 %, Швейцария - 57,2 %, Финляндия -33,3 %, Португалия - 30,3 %. Последнее десятилетие прошлого века для мира в целом характеризовалось неуклонным ростом доли возобновляемых источников энергии в общем энергобалансе большинства стран мира. Например, Великобритания - с 2,1 % до 2,7 %; Германия - с 3,7 % до 6,3 %; Франция - с 13,3 % до 14,6 %; Италия - с 16,4 % до 18,9 % и т. д.

В предвидении серьезных экологических последствий во многих развитых странах разработана экономическая стратегия, распространяющаяся не только на энергетику, но и на другие отрасли производства и потребления ресурсов, которые могут нанести ущерб окружающей среде. Эта стратегия предусматривает ведущую роль государства в решении экологических проблем. Примером стимулирования развития энергетики на возобновляемых источниках является германский «Закон

о приоритетности использования возобновляемых источников энергии». Резкое увеличение масштабов освоения ресурсов возобновляемых источников энергии в конце 20-го века было обеспечено в разных странах мира, особенно на начальных этапах их освоения, с помощью Государственных программ поддержки этой отрасли энергетики (Германия, Япония, США, Индия и т. д.)

солнечный биотопливо ветроэлектростанция геотермальный

Наверное у каждого возникали вопросы связанные с ВИЭ. Найдем некоторые ответы и развенчаем несколько популярных мифов про нетрадиционную энергетику.

Возобновляемые источники энергии (ВИЭ) сегодня не только «хорошая бизнес-идея» и источник непрекращающегося хайпа, пропаганды и контрпропаганды. Попробуем высказать свою позицию по некоторым повторяющимся мифам в области возобновляемых источников энергии.

Возобновляемые источники энергии: Правда и Мифы

Утверждение(У): «Площади Земли не хватит для того, что бы обеспечить потребности цивилизации с помощью ВИЭ»

Ответ(О): Земля получает от Солнца ~190 петаватт тепловой энергии (это то, что долетает до поверхности), а цивилизация потребляет 500 экзаджоулей первичной энергии за год, т.е. «мощность» человечества - 0,015 петаватт, порядка одной десятитысячной от приходящей энергии.

Есть другая элементарная оценка исходя из выработки имеющихся крупных солнечных электростанций - для обеспечения первичной энергией цивилизации довольно в аккурат хватает площади крупных пустынь.

Основное «но» в этом железобетонном опровержении мифа - неравномерность распределения удобной площади для ВИЭ-генерации по странам. В целом «неравномерность распределения» - это основное, что упускают люди, обобщающие любым образом картинку вокруг ВИЭ, и сегодня эта тема будет звучать рефреном.

Наглядная иллюстрация этого тезиса, хотя и относится только к электроэнергии и не учитывает некоторых потерь, все же дает представление - одной пустыни Сахара в теории хватает, что бы обеспечить человечество энергией.

У: «На производство солнечных панелей и ветрогенераторов затрачивается больше энергии, чем они способны выработать за свой жизненный цикл (EROEI<1)»

О: Это полная ерунда, как показывают более аккуратные замеры. В 2016 году в очередной раз эта тема была поднята в работе Ferroni and Hopkirk 2016, где было показано слегка негативное значение EROEI для накрышной СЭС в Швейцарии.

Однако работа пестрит ошибками, а скорректированное критиками значение оказывается в районе 8. Значение EROEI от 5 до 15 характерно для разнообразных попыток посчитать EROEI кремниевых кристаллических СБ, разброс значения объясняется как разницей условий, в которых расположена СЭС (между Норвегией и Саудовской Аравией разница в выработке одной и той же панели составит примерно 4 раза), так и разницей методики подсчета.

Для других ВИЭ, например ветрогенераторов, проглядываются еще более высокие значения EROEI, от 15 до 50, т.е. здесь критика приходится совсем мимо реальности.

Надо заметить еще, что сам показатель EROEI, хотя и используется учеными, является очень несовершенным. В его «расходной части» находится бесконечный ряд уменьшающихся показателей, которые невозможно учесть, однако если делать это правильно (что-то вроде учета «расход энергии на строительство домов, в которых жили рабочие, построившие завод по производству станков для производства кремниевых вафель для солнечных панелей») мы в итоге приходим к низким значениям EROEI - и действительно, ведь вся получаемая цивилизацией энергия расходуется, EROEI человечества в целом равен что-то около 3 (обратный кпд тепловых машин).

Эта цифра возникает, если осознать, что в реальном мире инвестировать энергию в добычу новой энергии без всей цивилизации за плечами невозможно. В итоге, полученные расчетом значения EROEI зависят в основном от границ подсчета расхода энергии, которые определяются исследователями более-менее произвольно.

Установленная мощность мировой ветроэнергетики. Средний мировой КИУМ ветроэнергетики составил 26%.

Установленная мощность фотовольтаичных батарей. Полезно помнить, что мощность фотовольтаики указывается для «стандартных условий» (поток света 1000 Вт/м^2), а реальный КИУМ получается от 6 до 33% в зависимости от региона и наличия приводов солнечных панелей.

У: «Производство солнечных панелей и аккумуляторов очень неэкологично, но поскольку делают их в основном в Китае, на это закрывают глаза»

О: Я ни разу не видел хоть каких-то цифр, подтверждающих это высказывание, оно и понятно - существуют десятки загрязнителей, которые желательно выразить в виде удельных показателей (например в виде «грамм/квтч выработанный за жизнь панели»), еще и в разных вариантах места производства панелей/аккумуляторов.

Разумеется, есть научные публикации, в которых проделали эту обширную работу, но прежде всего стоит попытаться оценить некоторые моменты самостоятельно. Кремниевые поликристалические панели к настоящему моменту практически окончательно вытеснили конкурировавшие какое-то время назад технологии (кремний-монокристалл, аморфный кремний и тонкопленочные CdTe и CIGS панели), хотя в 2018 году заговорили о возврате монокристалла кремния.

Поликристаллические кремниевые СБ используют, в среднем, 2 грамма кремния на каждый ватт установленной мощности. В 2017 году было установлено примерно 100 гигаватт новых панелей, что соответствует производству 200 тысяч тонн очищенного кремния. На фоне ~4 миллиардов тонн цемента, 1,5 миллиардов тонн стали, 60 млн тонн алюминия или 20 млн тонн меди - никакие, даже особенно грязные, производства полупроводникового кремния не способны вывести его производства в лидеры антирейтингов экологов, просто за счет разрыва в тысячи раз по масштабам с другими базовыми материалами.

Для литий-ионных аккумуляторов, который в 2017 году было выпущено порядка 100 ГВт*ч (забавное совпадение) характерным значением является 5 грамм на ватт*час, т.е. было использовано порядка 500 тысяч тонн материалов.

Есть и более прецизионные расчеты, учитывающие выбросы металлов или СО2 от всех совокупных мощностей, задействованных в производстве солнечных панелей. С учетом того, что эта работа была сделана более 10 лет назад, можно считать ее оценкой сверху, а так же забавной исторической вехой по умирающим нынче конкурентам поликристаллического кремния.

Важная оговорка здесь, впрочем есть. Современная наука предпочитает считать практически неустранимый «углеродный след», т.е. фактически затраты энергии на производство, а не сливы ядовитой органики или хрома в реки, считая, что последнее вполне себе устранимый эффект при правильном проектировании очистных сооружений.

Разумеется, Китай славится неэкологичными производствами, и там этот момент может и не соблюдаться. Тем не менее, принципиальных препятствий для того, чтобы столь малотоннажное производство не вносило негативного экологического эффекта не просматривается.

В итоге, как мне кажется, байка о страшной неэкологичности производства солнечных ВИЭ и аккумуляторов - есть просто механический перенос со стереотипа о неэкологичности и вредности химических производств вообще. В то же время, современная организация таких производств способна обеспечить отсутствие выбросов загрязнений в принципе.

Темпы ежегодного прироста различных энерготехнологий в 2014-2017. Невероятный взлет солнечной энергетики сегодня постепенно притормаживается, а вот невошедшая в этот график морская (offshore) ветроэнергетика разгоняется.

У: «Возобновляемая электроэнергия стала дешевле атомной/угольной/газовой»

О: Если предыдущие мифы горячо обсуждались в основном в предыдущие годы, то сегодня (в 2017-2018) самой обсуждаемой является себестоимость электроэнергии. Понятно почему - пока себестоимость ВИЭ-электричества была выше конкурентов, драйвером развития альтернативной энергетики были в основном нематериальные факторы - забота о экологии, прогрессивность, вещи, которые невозможно измерить, и кроме того в какой-то степени - энергонезависимость стран, внедряющих ВИЭ.

Однако, по мере сближения нормированной стоимости электроэнергии (LCOE) из разных источников складывается ситуация, что цель субсидирования ВИЭ достигнута, и дальше эта технология будет внедряться на рациональных мотивах.

Графическое отображение статистических данных по несубсидированной цене электроэнергии множества проектов возобновляемой энергетики по всему миру в динамике.

Однако, реальность здесь сложна и многогранна. Прежде всего следует вспомнить, что стоимость ВИЭ-энергии в разных точках планеты кардинально различается. Проще всего это проиллюстрировать традиционными ВИЭ - гидроэлектростанциями.

Вы можете в принципе выкопать искусственную реку и перекрыть ее ГЭС в удобном месте, или соорудить высокие бетонные стенки вдоль реки, чтобы перенести створ ГЭС ближе к потребителям, но понятно, что цена электроэнергии с такими решениями будет совершенно неконкурентноспособна. Получается, что есть отдельные точки, где ГЭС гораздо более выгодны, чем в других местах.

Аналогично «новые» ВИЭ - существуют регионы мира, скажем, Аравийский полуостров, Чилийские пустыни, пустыни юго-запада США - в которых стандартная панель выдает значительно больше (в 2-4 раза) электроэнергии в год, чем в Германии или Японии.

Это значит, что если в проектах СЭС в этих регионах LCOE уже упала до 25...50 долларов за МВт*ч, эту цену невозможно автоматически проецировать на любой регион.

Так же неравномерно распределены и затраты на сооружение ВИЭ-электростанций. Это определяется как разницей в стоимости земли, оплате труда и наличии индустрии сооружения ВЭС или СЭС с большим опытом.

В итоге стоимость ВИЭ-электроэнергии для разных проектов в разных точках земного шара оказывается разбросанной в 20 раз для солнца и около 10 раз - для ветра.
В итоге, оценку стоимости ВИЭ-электроэнергии можно сформулировать так: на определенных территориях LCOE ВИЭ-электричества стала ниже традиционных решений и с каждым годом, по мере удешевления технологий, эти территории становятся все больше.

Однако, тема стоимости ВИЭ-электроэнергии и шире, конкурентноспособности ВИЭ, не может быть рассмотрена без еще двух вопросов: субсидирование ВИЭ и переменчивость их, как источника электроэнергии.

У: «ВИЭ-электростанции сплошь субсидируемые, и в чисто рыночных условиях неконкурентоспособны»

О: Как мы уже рассмотрели выше, конкурентность ВИЭ практически полностью определяется месторасположением конкретной станции. Поэтому если, например, механически разделить объемы субсидирования на выработку в киловатт*часах - то это даст в лучшем случае повод для размышления, а не точный инструмент для оценки “чистой” конкурентоспособности ВИЭ.

Тем не менее это будет полезно для понимания масштабов искажения рынков электроэнергии. Для этого стоит отделить субсидии на разработку и исследования от прямой поддержки генераторов электроэнергии. Первый вид субсидий не такие масштабные и более-менее равномерные по разным энерготехнологиях.

Статистика субсидий на разработку энерготехнологий в странах OECD - видно, что 30-40 лет назад атом был безусловным фаворитом.

Прямая поддержка тоже бывает разная по форме: бюджетные деньги на выкуп ВИЭ-э/э в Китае и Великобритании, налоговые вычеты в США, специальная составляющая цены электричества, распределяемая среди ВИЭ-генераторов в Германии, однако всю ее можно свести к легко сравнимому числовому показателю - центы субсидии на киловатт*час выработки ВИЭ.

В 2015 году, например, поддержка по 4 крупнейшим “ВИЭ-странам” выглядела так: В Китае было выделено 4637,9 млн долларов (1184 на ветер и 3453,9 на солнце) на производство 187,7 ТВт*ч электроэнергии, в среднем 2,4 цента за кВт*ч, в Великобритании - 4285 млн долларов на 40,1 ТВт*ч, в среднем по 10,7 цента за кВт*ч, в США было выдано чуть больше 2 миллиарда долларов налоговых кредитов (исключительно на Солнце) при выработке 115,7 ТВт*ч (в основном ветром), т.е 1,6 цента за кВт*ч, в Германии было перераспределено 8821 млн долларов на 96,3 ТВт*ч, т.е. 10,91 цент на кВт*ч.

Надо отметить, что самая богатая страна из широко развивающих ВИЭ - США, тратит совсем небольшие деньги на прямое субсидирование ВИЭ, хотя есть и другие механизмы - например, в Калифорнии есть законодательно установленные доли «зеленой» энергии, который должны быть выкуплены сетями у генераторов.

Эти цифры имеют (к сожалению) и еще осложняющее понимание обстоятельство. Например, в Германии на расходах на поддержку довлеют старые проекты, имеющие субсидии в 5-10 раз выше средних арифметических и получившие это право 10 и более лет назад (FIT закрепляется за объектом генерации на 20 лет).

Кроме того, в 2016-2017 произошло значительное снижение тарифов субсидирования ВИЭ по значимым странам, т.е. цифры из 2015 года сегодня уже неактуальны (в Китае поддержка снизилась в 2 раза, в Германии перешли к аукционам с Strike price в 2-3 раза ниже среднего FIT 2015 года).

Однако как и в предыдущем вопросе видно главное - поддержка очень сильно различается по разным странам. В Европе ценовые диспропорции между ВИЭ и углеводородной энергетикой могут достигать 100% (надо учитывать также обременение угольной генерации налогами на эмиссию СО2), однако быстро идут вниз, в Китае, Индии речь идет о 10..30% поддержки, в США можно говорить о рыночном паритете (хотя в США как раз сбрасывать со счета субсидии на разработку уже нельзя - они больше прямой поддержки).

Фактически, ситуация с субсидиями следует за расширением зон прямой конкурентности ВИЭ, как источников электроэнергии - чем больше их размер, тем меньше субсидии. опубликовано Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Учебный год

Лекция 20

Энергосберегающие технологии и освоение новых источников энергии

Условно источники энергии можно поделить на два типа: невозобновляемые и возобновляемые . К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, не экологична, и многие из них истощаются.

Возобновляемые источники энергии - это источники, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из природных ресурсов - таких как солнечный свет, ветер, движении воды в реках или морях, приливы, биотопливо и геотермальная теплота - которые являются возобновляемыми, т.е. пополняются естественным путем.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

Примеры использования возобновляемой энергии.

1.Ветроэнергетика является бурно развивающейся отраслью. Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Использование энергии ветра растет примерно на 30 процентов в год и широко используется в странах Европы и США.

2. На гидроэлектростанциях (ГЭС) в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.

Особенности этого источника энергии:

Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций;

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;

Возобновляемый источник энергии;

Значительно меньше воздействует на воздушную среду, чем другие виды электростанций;


Строительство ГЭС обычно более капиталоёмкое;

Часто эффективные ГЭС удалены от потребителей;

Водохранилища часто занимают значительные территории;

Лидерами по выработке гидроэнергии на человека являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

3.Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

Способы получения электричества и тепла из солнечного излучения:

Получение электроэнергии с помощью фотоэлементов;

Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах);

Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор);

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием), преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства солнечной энергетики :

Общедоступность и неисчерпаемость источника;

Теоретически полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной способности) земной поверхности и привести к изменению климата.

Недостатки солнечной энергетики :

Зависимость от погоды и времени суток;

Как следствие необходимость аккумуляции энергии;

Высокая стоимость конструкции;

Необходимость периодической очистки отражающей поверхности от пыли;

Нагрев атмосферы над электростанцией.

4.Приливные электростанции . Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

5.Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Крупнейшей в мире геотермальной установкой является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

6.Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное (биогаз, водород).

США и Бразилия производят 95 % мирового объёма биоэтанола. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы. По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин, работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Ethanol), на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины («гибкотопливные» машины). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива.

Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд. человек.

С другой стороны, продовольственная и сельскохозяйственная организация ООН (FAO) в своем отчете говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта нефти. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн. га из 63,5 млн. га потенциально пригодных земель. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385-472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.

7.Водородная энергетика - развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливные элементы - это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %). Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент). В отличие от топливных элементов, одноразовые гальванические элементы содержат твердые реагенты, и когда электрохимическая реакция прекращается, должны быть заменены, электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, теоретически, в них можно заменить электроды. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в нее реагенты и сохраняется работоспособность самого элемента. Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.

Топливные элементы обладают рядом ценных качеств, среди которых:

7.1 Высокий КПД : у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.

7.2Экологичность . В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу.

7.3 Компактные размеры . Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях.

Проблемы топливных элементов .

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта? Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи). Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМЕНИ СЕРГО ОРДЖОНИКИДЗЕ»

Факультет геоэкологии и географии

Кафедра экологии и природопользования

По курсу “Техногенные системы и экориск”

“Возобновляемые и не возобновляемые источники энергии”

1. Возобновляемые энергоресурсы. 4

1.1. Классификация возобновляемых источников энергии. 4

1.2. Ветроэнергетика. 5

1.3. Гидроэнергетика. 7

1.4 Гелиоэнергетика. 9

1.5 Энергия биомассы. 11

2. Невозобновляемые источники энергии. 13

2.1. Представители невозобновляемых энергоисточников. 14

2.1.3. Природный газ. 17

2.2. Получение атомной энергии. 17

2.2.1. Атомные электростанции. 18

2.2.2. Преимущества и недостатки АЭС. 19

2.2.3. Аварии на АЭС. 20

Список использованной литературы. 22

В современном мире существуют несколько глобальных проблем. Одна из них – истощение природных ресурсов. С каждой минутой в мире используется огромное количество нефти и газа для нужд человека. Поэтому возникает вопрос: на долго ли нам хватит этих ресурсов, если продолжать их использовать в таком же огромном объеме? По расчетам, запас нефтяных ресурсов планеты исчерпается к концу нынешнего столетия. То есть, нашим внукам и правнукам будет нечего использовать для получения энергии? Звучит пугающе. Также использование традиционных полезных ископаемых плохо влияет на экологическую обстановку мира. Поэтому, человечество сейчас все больше задумывается об альтернативных источниках получения энергии. В этом и состоит актуальность данной реферативной работы.

Классификация возобновляемых источников энергии

Возобновляемые источники энергии (ВИЭ) – это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов. жизнедеятельности биоцентров растительного и животного происхождения Характерной особенностью ВИЭ является цикличность их возобновления, которая позволяет использовать эти ресурсы без временных ограничений.

Обычно, к возобновляемым источникам энергии относят энергию солнечного излучения, потоков воды, ветра, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:

· механическая энергия (энергия ветра и потоков воды);

· тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

· химическая энергия (энергия, заключенная в биомассе).

Потенциальные возможности ВИЭ практически неограниченны, но несовершенство техники и технологии, отсутствие необходимых конструкционных и других материалов пока не позволяет широко вовлекать ВИЭ в энергетический баланс. Однако за последние годы в мире особенно заметен научно-технический прогресс в сооружении установок по использованию ВИЭ и в первую очередь: фотоэлектрических преобразований солнечной энергии, ветроэнергетических агрегатов и биомассы.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Это объясняется несколькими причинами:

· Нет потребности в транспортировке;

· ВИЭ – экологически выгодны и не загрязняют окружающую среду;

· Отсутствие топливных затрат;

· При определенных условиях, в малых автономных энергосистемах, ВИЭ могут оказаться экономически выгоднее, чем традиционные ресурсы;

· Нет необходимости в использовании воды в производстве.

Энергия ветра уже более 6000 тысяч лет используется людьми. Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во II-I вв. до н. э. Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

Начиная с XIII в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков.

Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырехлопастные роторы диаметром 23 м.

Однако в начале 19-20 вв. НТП затормозил развитие ветроэнергетики. Полезные ископаемые, такие как нефть и газ, заменили ветер в качестве источника энергии. Но человечество такими темпами истощает природные ресурсы Земли, что вновь встает вопрос о возврате к истокам, т.е. к новому этапу развития ветровой энергетики.

Наиболее острый вопрос ветроэнергетики – экономическая эффективность ВЭУ. Очень важно выбрать правильное место для установки агрегатов. Для этого существуют специальные характеристики, позволяющие правильно подобрать местоположение. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше) строятся оффшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров. Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания.

Не стоит забывать, что производительность энергии зависит от 2 главных факторов: направления и скорости ветра.

Скорость ветра – главное препятствие развития ветровой энергетики. Ветер характеризуется не только многолетней и сезонной изменчивостью. Он может менять скорость и направление в течение очень коротких промежутков времени. Отчасти кратковременные колебания скорости ветра компенсируются самим ветроагрегатом, особенно на больших скоростях ветра, когда он начинает подтормаживать своё вращение (обычно, после 13-15 м/с). Однако более длительные изменения или снижение скорости ветра влияют на выработку ветроагрегата и всего ветропарка в целом. Но в современной ветроэнергетике этот недостаток сводится к минимуму тем, что ветромониторинг, начинающийся еще на предпроектной стадии, продолжает вестись и в дальнейшем. Накопленная база данных ветропотенциала позволяет прогнозировать выработку ветропарка уже на 2-м году его эксплуатации на 24 часа вперед с достаточно высокой для электрических сетей точностью.

Все ветровые установки можно разделить на 2 больших типа: с вертикальной осью вращения ротора и с горизонтальной.

ВЭС с вертикальной осью вращения (на вертикальную ось «насажено» колесо, на котором закреплены «приемные поверхности» для ветра), в отличие от крыльчатых, могут работать при любом направлении ветра, не изменяя своего положения. Ветродвигатели этой группы тихоходны, поэтому не создают большого шума. В них используются многополюсные электрогенераторы, работающие на малых оборотах, что позволяет применять простые электрические схемы без риска потерпеть аварию при случайном порыве ветра. Главными недостатками таких агрегатов является их малый период вращения и малый КПД по сравнению с горизонтальными ВЭС. К побочным действиям работы таких установок следует отнести наличие низкочастотных вибраций, возникающих за счет дисбаланса ротора.

Ветроэнергетический рынок – один из самых динамично развивающихся в мире. Его рост за 2009 год – 31%.До сих пор ветроэнергетика наиболее динамично развивалась в странах ЕС, но сегодня эта тенденция начинает меняться. Всплеск активности наблюдается в США и Канаде, в то время как в Азии и Южной Америке возникают новые рынки. В Азии, как в Индии, так и в Китае, в 2005 году зарегистрирован рекордный уровень роста.

В настоящее время промышленным производством ВУЭ занимается более 300 фирм. Наиболее развитую промышленность имеют Дания, Германия, США. Серийное производство ветроустановок развито в Нидерландах, Великобритании, Италии и других странах.

Человек с давних пор использовал энергию воды и ее течения в своих нуждах. Поэтому история гидроэнергетики берет свое начало с древних времен: еще древние греки использовали водяные колеса для помола зерна. С течением времени технологии совершенствовались, и в 19 веке была изобретена первая водная турбина. Ее создали отдельно друг от друга 2 ученых: русский исследователь И. Сафонов в 1837 и французский ученый Фурнейрон в 1834 году. Однако изобретателем гидротурбины, можно даже сказать первой ГЭС, считается М. Доливо-Добровольский. Свое изобретение он продемонстрировал на выставке во Франкфурте. Оно состояло из генератора трехфазного тока, который вращала водяная турбина, а электричество, вырабатываемое ею, передавалось по 170 километровым проводам на всю территорию выставки. В настоящее время энергия воды составляет более 60 процентов от всех ВИЭ и является самой производительной из всех (КПД современных ГЭС составляет около 85-95%). После этого в мире начинается «гидроэнергетический бум».

Основными причинами столь бурного развития гидроэнергетики являются постоянное возобновление ресурсов круговоротом воды в природе и относительно простыми механизмами добычи самой энергии. Однако, зачастую, постройка и установка ГЭС очень трудоемкий и капиталоемкий процесс. Особенно это относится к сооружению плотин и накоплению огромных масс воды за ними. Также стоит отметить, что добыча гидроэнергии экологически чистый процесс. Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии .

Если описывать работу ГЭС, то ее принцип заключается в выработке энергии турбиной, вращаемой с помощью падающей с неопределенной высоты воды. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Турбины устанавливаются в зависимости от напора водяного потока на ГЭС.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

· Мощные – вырабатывают от 25 МВТ до 250 МВт и выше;

· Средние – до 25 МВт;

· Малые гидроэлектростанции – до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

В настоящее время лидерами по выработке гидроэнергии являются Норвегия, Китай, Канада, Россия. Лидером по количеству энергии воды на душу населения является Исландия.

Солнце – один из самых источников излучения в нашей Вселенной. И поэтому не случайно энергия звезды все больше используется человеком для переработки в электричество. Действительно, излучение Солнца, доходящее до всей поверхности Земли, имеет колоссальную мощность 1,2*10 14 кВт. И иногда очень обидно, что огромная часть этой энергии пропадает зря, особенно если она по своему количеству в разы превосходит ресурсы всех остальных ВИЭ вместе взятых. Поэтому в последние годы все активнее развивается гелиоэнергетика, в которой используется солнечная радиация для получения электричества.

Однако с помощью солнечного тепла можно не только получать ток, но обеспечивать теплопроводность. Такое возможно благодаря солнечным коллекторам, в которых нагревается вода при помощи солнечной радиации. И теперь она может использоваться для обогрева каких-либо сооружений.

Также как и в ветроэнергетике, для гелиостанций очень важно правильно выбрать место для их постройки. Не следует забывать, что солнечные лучи, прежде чем достигнуть поверхности Земли, преодолевают множество преград. Прежде всего, к ним можно отнести атмосферу, а в особенности озоновый слой. Именно благодаря ему на Земле вообще возможна жизнь, ведь он не пропускает вредное для всего живого ультрафиолетовое излучение. Также немаловажную роль играют содержащиеся в атмосфере частицы водяного пара, пыли, примесей газов и другие аэрозоли. Они частично рассеивают радиацию.

В целом, поступление радиации на земную поверхность зависит от:

· Климатических особенностей территории;

· Высоты места приема над уровнем моря;

· Высоты солнца над горизонтом и др.

Общее излучение, доходящее до Земли подразделяется на:

· Прямое излучение, дошедшее до Земли;

На основе этих величин составляется суммарный радиационный баланс земли, по которому определяются наиболее удачные места для расположения гелиостанций.

Классифицировать их можно по:

· Виду преобразования солнечной энергии в другие ее виды – тепло или электричество

· Концентрированию энергии – с концентраторами или без них

· Технической сложности – простые и сложные

К простым установкам относят опреснители, нагреватели воды, сушилки, печные нагреватели ит.д.

К сложным относятся установки, которые преобразуют поступившую солнечную энергию в электрическую путем фотоэлектрических приборов.

Одним из лидеров использования солнечной энергии является Швейцария. В данный момент в стране эффективно развивается программа по строительству гелиостанций. Также идет тенденция на производство солнечных батарей, устанавливающихся на крыши зданий или как фасады. Такие установки могут компенсировать 50…70% энергии, затрачиваемой на производство

К биомассе относятся все вещества органического происхождения.

1. Древесина. Уже многие тысячи лет человек использует дрова для получения тепла, приготовления пищи, освещения жилья. Да и до сих пор в мелких поселениях традиционно используется этот вид получения энергии. К сожалению это все приводит к одной из важнейших проблем мира – вырубки лесов. Однако эта задача решается с помощью использования энергии быстрорастущих деревьев, таких как тополь, ива и др.

2. Отстой сточных вод. Если вдуматься, то в использованных человеком водах таятся огромные запасы энергии. При отстаивании жидкости образуется огромное количество твердого вещества, которое при переработке анаэробными бактериями может содержать около 50% органического вещества. Однако существуют значительные трудности при переработке сточных вод. Главное из них – высушивание этих вод, так как на это тратится много тепла, которое по своим количественным характеристикам может превосходить теоретические значение энергии при полном сгорании отстоянного вещества. Также этот процесс не рентабелен с точки зрения экологии. Ведь при сгорании выделяется большое количество углекислого газа. Самым правильным вариантом в этом случае считается получение метана при помощи анаэробных бактерий. Но установки для этого весьма несовершенны, поэтому этот способ в современное время не получает большого размаха.

3. Отходы животноводства. Экскременты животных содержат высокое количество органического вещества, которые может использоваться для получения энергии. Однако так же, как и в случае со сточными водами, в навозе содержится большое количество влаги, поэтому его высушивание не выгодно. Тогда существует другой вариант – это анаэробное перегнивание. С помощью него получают метан, а оставшиеся вещества могут пойти на удобрения для почв. Но стоит помнить, что количество перерабатываемого вещества гораздо больше в более свежем навозе, поэтому, чтобы его переработка была экономически выгодна, нужны специальные постройки, позволяющие собирать все экскременты в одно место, не теряя его свежести.

4. Растительные остатки. После сбора урожая всегда остаются неиспользуемые части растений. Они представляют еще один источник энергии. В них содержится целлюлоза – углеродсодержащий углевод. Благодаря относительно небольшому количеству влаги в останках, при сжигании они выделяют много энергии. Ограничивающим фактором развития этого источника энергии является сезонность произрастания культур. Чтобы обеспечить круглогодичное использование останков растений, нужны специальные сооружения для их роста . Также немаловажными факторами являются потребность в перевозки к месту переработки и легкость сбора культур.

5. Пищевые отходы. Они тоже могут служить источником получения энергии. Особенно учитывая, что, например, в отходах фруктов содержится большее количество углеродсодержащих сахаров, чем в остатках зерновых культур, а в остатках мясных продуктов значительное количество протеина. Но наличие влаги затрудняет возможность получения энергии путем сгорания отходов. Поэтому целесообразней из них получать метан с помощью бактерий. Но тут появляется другая трудность: пищевые отходы с успехом используются в животноводстве. Поэтому этот источник практически не развивается в наше время. Исключение только составляют отходы в виде семян и шелухи, а также остатки от сахарного тростника. Например, в странах, где произрастает много тростника, его отходы идут на производство этанола, который при сжигании выделяет большое количество энергии. Самым ярким примером могут послужить Гавайские острова.

Классификация возобновляемых источников энергии


Классификация возобновляемых источников энергии МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМЕНИ СЕРГО ОРДЖОНИКИДЗЕ»

Виды возобновляемой энергии

К возобновляемым источникам энергии, ресурсы которых по мере использования не уменьшаются, относятся: солнечная энергия, энергия ветра, гидроэнергия, энергия морских приливов и волн, энергия биомассы. Все эти виды энергии имеют солнечное происхождение. Гидроэнергия в больших объёмах используется для производства электроэнергии, поэтому не относится к нетрадиционным источникам, исключая малые ГЭС.

К возобновляемым источникам энергии обычно относят и геотермальную энергию – глубинное тепло Земли, образующееся в недрах Земли в результате химических реакций, распада радиоактивных элементов и других процессов.

Самый мощный источник возобновляемой энергии – солнечная радиация. Считается, что на один квадратный метр поверхности Земли приходится в среднем около 150 Вт солнечной радиации. Мощность, поступающая с солнечными лучами на площадку суши размером 100´100 км 2 , соизмерима с установленной мощностью всех электростанций планеты.

Однако преобразование солнечной энергии, как впрочем и других возобновляемых видов, в электрическую сопряжено с большими затратами. Это связано, главным образом, с низкой плотностью энергии, запасённой в любом возобновляемом источнике.

Другим недостатком возобновляемых источников является неравномерность поступления энергии. Наступила ночь, или солнце скрылось за тучами – резко снизилось поступление энергии.

Несмотря на это сегодня в мире использование нетрадиционных возобновляемых источников энергии (НВИЭ) достигло промышленного уровня, ощутимого в энергобалансе ряда стран. Масштабы применения НВИЭ в мире непрерывно и интенсивно возрастают. В 2012 г. мощность энергоустановок на НВИЭ по данным РАН составила 990 ГВт, что больше мощности всех АЭС. Это направление является одним из наиболее динамично развивающихся среди других направлений в энергетике. В 2012 г объем инвестиций в ВИЭ составил. 244 млрд. долларов США.

Существенный импульс развитию НВИЭ во многих западных странах придал нефтяной кризис 1973 г., который по существу перевел это направление из стадии разрозненных НИР к стадии реализации целенаправленных государственных программ НИОКР и создания опытных и головных образцов оборудования и демонстрационных объектов по использованию НВИЭ. Эти работы являлись составной частью предпринятых энергосберегающих мероприятий, направленных на снижение зависимости от импорта нефтепродуктов.

По мере стабилизации нефтяного рынка и снижения мировых цен на нефть в 80-е годы главным стимулом развития НВИЭ стали экологические соображения, так как природоохранная идеология к этому времени прочно укоренилась в общественном сознании в развитых странах. В целом же использование НВИЭ рассматривается как альтернативная резервная технология в области энергетики, развитие которой необходимо, поскольку наперед неизвестно, в какие сроки и какие масштабные ограничения могут быть наложены на традиционную топливную и ядерную энергетику вследствие ее влияния на окружающую среду. Поэтому данное направление признано во многих странах одним из приоритетных направлений в энергетике. В 2012 г. в 138 странах действуют программы развития НВИЭ.

Развитие этого направления поддерживается узаконенным правом подключения НВИЭ к электрическим сетям энергоснабжающих компаний и продажей электроэнергии, налоговыми льготами и государственными программами финансирования научно-исследовательских работ по использованию НВИЭ.

Наиболее приоритетными по объёму финансирования являются НВИЭ на основе солнечной энергетика (100 млрд.$), затем следует ветровая энергия (80 млрд.), биомасса, и замыкают этот список малые ГЭС и энергия океана.

В настоящее время суммарная установленная мощность солнечных электростанций составляет более 100 ГВт, геотермальных более 6000 МВт, ветроэлектростанций – более 280 ГВт, приливных более 250 МВт.

Успехи России на этом направлении более скромные. И это при том, что ещё в 30-е годы прошлого века в созданном при Академии наук энергетическом институте по инициативе Г.М. Кржижановского были начаты исследования по возобновляемым источникам энергии, направленные на использование в первую очередь солнечной и ветровой энергии, а в 40-е годы в институте была создана специализированная лаборатория для проведения исследований в данной области.

Оценка экономического потенциала НВИЭ по России составляет примерно 250 млн. т у.т. в год, в том числе геотермальная энергия – 115, малая гидроэнергетика – 65, энергия биомассы – 35, низкопотенциальное тепло – 32, солнечная энергия – 12, энергия ветра – 10.

Виды возобновляемой энергии


Виды возобновляемой энергии К возобновляемым источникам энергии, ресурсы которых по мере использования не уменьшаются, относятся: солнечная энергия, энергия ветра, гидроэнергия, энергия морских

7 Возобновляемые источники энергии

7.1. Возобновляемые источники энергии

Таблица 7.1 – Потенциальные запасы источников энергии на Земле

Энергия ископаемого топлива

Энергия солнечных лучей

Энергия морей и океанов

Энергия внутреннего тепла Земли

Европейское Сообщество с точки зрения энергоснабжения. Насколько различно количество ежегодно производимой электроэнергии в каждом государстве-участнике ЕС, настолько отличается и роль отдельных энергоносителей в этих странах.

Таблица 7.2. Потенциал альтернативной энергетики Украины

Показатель

Установленная мощность, млн кВт

Выработка электроэнергии, млрд кВт*ч

Экономия топлива, млн т в условном исчислении

солнечные коллекторы для обеспечения домов горячей водой;

солнечные фотоэлектрические батареи (особенно в сельских местностях);

солнечные тепловые электростанции (в дальней перспективе).

Фотоэлектрические (солнечные) батареи могут снабжать электричеством дома. Малые по величине и легко растяжимые панели могут вырабатывать электричество для поселков городского типа во всем мире без больших электростанций или силовых кабелей. Массивные комплекты таких батарей могут производить столько электричества, сколько производит малая электростанция. Сегодня, по крайней мере, две дюжины компаний США используют фотоэлектрические панели в своей работе. В 1990 во Флориде начали продавать здания, которые электрифицированы за счет установленных на их крыше солнечных батарей. Хотя системы солнечных батарей составляют около одной трети от стоимости каждого дома, они окупаются в счет оплаты за электричество. Новая технология позволяет встраивать солнечные батареи в кровельный материал крыш.

Рабочим телом в коллекторах служит вода, а в зимний период – водно-спиртовой раствор. Эффективность использования падающего на приемник излучения составляет от 20% до 35%, произведенная электроэнергия – от 10% до 30% эффективного падающего излучения. Принципиальная схема такой установки приведена на рис.7.4.

В настоящее время разработаны проекты гелиобашен на 12 МВт, на 100 МВт (США), их стоимость значительно меньше, чем “Салар-1”, и имеется перспектива дальнейшего удешевления (Компания “Southern California Edison” и др.). Построены гелиоэнергетические башни в Испании (Альмерия), на Сицилии (Адрано), во Франции (Телнес), в Японии (Нио Таун), но они несколько меньше, чем “Салар-1”.

7.2.2. Прямое преобразование солнечной энергии в электрическую

Единственным недостатком солнечных батарей пока остается их сравнительно высокая стоимость (8-12 центов за киловатт-час), но многими компаниями ведутся работы по удешевлению стоимости изготовления солнечных элементов. Германская компания успешно испытала гелиоэлектрическое окно, разрабатываются технологии установки солнечных элементов на фасадах зданий и сооружений. Комплексы солнечных элементов – идеальная технология для электрификации сельских местностей. В Индии установлены солнечные батареи в 38000 деревень, в Зимбабве – в 2500 деревень. На крышах домов в Южной Африке, Шри Ланке, Доминиканской республике и других слабо развитых странах установлено более 200000 комплексов солнечных элементов, в Норвегии – 50000, в США – около 100000.

7.2.3. Потенциал и перспективы использования солнечной энергии

7.3. Ветроэнергетика и малая гидроэнергетика

7.3.1. Потенциал и перспективы развития ветроэнергетики

Паровая тяга все еще обеспечивает значительную часть требуемой нам энергии. Даже лучшие из современных атомных реакторов всего лишь.

Характеристики возобновляемых источников энергии и основные аспекты их использования в России

Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод)

ВОСПИТАТЕЛЬНАЯ ПРОБЛЕМА ШКОЛЫ

Валеологическая направленность учебного и воспитательного процесса в образовательном учреждении

ВОСПИТАТЕЛЬНЫЕ ЗАДАЧИ ШКОЛЫ

Формировать активную гражданскую позицию, чувства патриотизма и национальной гордости, позитивное отношение к разнообразию культур.

Совершенствовать деятельность ученического самоуправления для формирования позитивных социальных качеств в процессе деятельности и коммуникативного взаимодействия.

Формировать здоровье сберегающую среду за счет совершенствования организации внеурочной деятельности учащихся.

Совершенствовать совместную работу семьи и школы по воспитанию конкурентоспособной, социально адаптированной личности.

Характеристики возобновляемых источников энергии

и основные аспекты их использования в России

1 Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод), исключая применения данной энергии на гидроаккумулирующих электроэнергетических станциях. Энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов. Геотермальная энергия с использованием природных подземных теплоносителей. Низко потенциальная тепловая энергия земли, воздуха, воды с применением особых теплоносителей. Биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива. А также биогаз; газ, выделяемый отходами производства и потребления на свалках таких отходов; газ, образующийся на угольных разработках.

Теоретически возможна и энергетика, основанная на использовании энергии волн, морских течений, теплового градиента океанов (ГЭС установленной мощностью более 25 МВт). Но пока она не получила распространения.

Способность источников энергии возобновляться не означает, что изобретен вечный двигатель. Возобновляемые источники энергии (ВИЭ) используют энергию солнца, тепла, земных недр, вращения Земли. Если солнце погаснет, то Земля остынет, и ВИЭ не будут функционировать.

2 Преимущества возобновляемых источников энергии в сравнении с традиционными

Традиционная энергетика основана на применении ископаемого топлива, запасы которого ограничены. Она зависит от величины поставок и уровня цен на него, конъюнктуры рынка.

Возобновляемая энергетика базируется на самых разных природных ресурсах, что позволяет беречь невозобновляемые источники и использовать их в других отраслях экономики, а также сохранить для будущих поколений экологически чистую энергию.

Независимость ВИЭ от топлива обеспечивает энергетическую безопасность страны и стабильность цен на электроэнергию

ВИЭ экологично чисты: при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы. Отсутствуют экологические издержки, связанные с добычей, переработкой и транспортировкой ископаемого топлива.

В большинстве случаев ВИЭ-электростанции легко автоматизируются и могут работать без прямого участия человека.

В технологиях возобновляемой энергетики реализуются новейшие достижения многих научных направлений и отраслей: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологий, материаловедения и т. д. Развитие наукоемких технологий позволяет создавать дополнительные рабочие места за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также экспорта наукоемкого оборудования.

3 Наиболее распространенные возобновляемые источники энергии

И в России, и в мире – это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.

Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра.

Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста.

Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.

Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.

4 Состояние возобновляемой энергетики в России

Этот вид энергетики представлен в России главным образом крупными гидроэлектростанциями, обеспечивающими около 19% производства электроэнергии в стране. Другие виды ВИЭ в России пока заметны слабо, хотя в некоторых регионах, например на Камчатке и Курильских островах, они имеют существенное значение в местных энергосистемах. Суммарная мощность малых гидроэлектростанций порядка 250 МВт, геотермальных электростанций – около 80 МВт. Ветроэнергетика позиционируется несколькими пилотными проектами общей мощностью менее 13 МВт. Приливная энергетика ограничена возможностями экспериментальной Кислогубской ПЭС.

Обзор возобновляемых источников энергии

5 Энергия солнца

Солнечная энергетика – использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов

Достоинства и недостатки солнечной энергетики

Достоинства Общедоступность и неисчерпаемость источника. Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.

Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

Сегодня солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически. В России солнечная энергетика существует только в виде небольших установок автономного энергоснабжения, не подключенных к энергосистеме и применяемых частными лицами и небольшими организациями.

Ветер – поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с.

Ветры над большими площадями образуют обширные воздушные течения – муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.

Ветроэнергетика – отрасль энергетики, специализирующаяся на использовании энергии ветра – кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.

Получение энергии с помощью ветрогенераторов Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) – устройство для преобразования кинетической энергии ветра в электрическую. Мощность современных ветрогенераторов достигает 6 МВт.

Достоинства и недостатки ветрогенераторов

– Экологически-чистый вид энергии

Ветровая энергетика – лучшее решение для труднодоступных мест.

Относительно невысокий выход электроэнергии

Ветроэнергетика является наиболее развитой сферой практического использования природных возобновляемых энергоресурсов. Мировыми лидерами в ветроэнергетике являются США, Германия, Нидерланды, Дания, Индия. В настоящее время в России возникли новые организации, занимающиеся ветроэнергетикой, постепенно налаживается сотрудничество с зарубежными партнерами.

В России, по мнению экспертов, уникальное сочетание благоприятных факторов для развития ветроэнергетики:

богатый и хорошо изученный потенциал ветра (127 ТВтч);

большие объёмы энергопотребления, связанные с климатическими условиями и структурой экономики.

В настоящее время, прорабатывается и реализуется целый ряд проектов строительства ветроэнергетических станций (ВЭС), мощностью чаще всего от 100 до 300 МВт каждая, практически по всей территории страны, хотя большая часть сконцентрирована на северо-западе и юге европейской части России: Ленинградская область; Псковская область; Ростовская область и Северный Кавказ (Порт Кавказ, Анапа, Темрюк, Карачаево-Черкесия); Оренбург; Остров Русский в Приморье. Всего в России насчитывается 20-25 проектов ВЭС в разной степени продвижения.

Геотермальная энергетика – производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновимым энергетическим ресурсам.

Тепловая энергия недр образуется за счет расщепления радионуклидов в середине планеты. Этот экологически чистый и постоянно обновляемый источник энергии может быть использован в регионах с вулканическими проявлениями и геологическими аномалиями, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара может подаваться на турбины для производства тока. Горячая вода естественных источников (гейзеров) может быть использована непосредственно.

Однако тепло Земли очень “рассеянно”, и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи земной коры.

Биогаз – газ, получаемый метановым брожением биомассы. В результате биохимической реакции, в которой принимают участие метановые бактерии, выделяется биогаз, его основными составляющими являются: метан (СН4, около 70%), углекислый газ (СО2, около 30%) и некоторое количество h3, h3S, N2. Теплотворная способность данной газовой смеси от 5000 до 8000 Ккал/м3, в зависимости от состава органических отходов.

Характеристики возобновляемых источников энергии и основные аспекты их использования в России


Возобновляемые источники энергии Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод)